lunes, 26 de septiembre de 2011

Wright y Niemeyer



1- Iglesia para la Annunciation Greek Orthodox Congregation, Milwaukee
1956-1961, Frank Lloyd Wright.
2- OCA o Palacio de las Artes, Parque Ibirapuera, San Pablo 
1951-2006, Oscar Niemeyer

La década del 50 fue muy prolífica en el Planeta Tierra para recibir mensajes de sus amigos interespaciales. Aún no disponemos de información calificada para confirmar la presencia de Frank y Oscar en el Cerro Uritorco, a orillas del río Calabalumba, cercano al centro de Capilla del Monte; pero rastros de encuentros cercanos y campos magnéticos creemos han influido en nuestra profesión. 
¿Habrán sido atraídos por deseos de comunicación extraterrestre, exploración interestelar o quizás guiados por planos dictados desde objetos no identificados? (recuerden por esos tiempos no había Internet en algunos planetas)
Lo único confirmado es que Niemeyer en el ‘51 y Wright en el ‘56 comenzaron a idear sendas arquitecturas con características de naves espaciales, que por suerte aún no han despegado. No se olviden si visitan las obras de llevar escafandra, por las dudas.
Mirando más allá de nuestra atmósfera del siglo XX, la verdad revela una notoria conexión del arquitecto norteamericano con el siglo XIX y del maestro brasilero con el XXI.

¿Sabía usted que Niemeyer realizó doce versiones del OCA entre 1951 y 1954 y otras diez diferentes entre 1989 y 2002, cuando la política se decidió en terminar las obras?

Editado por el arq. Martín Lisnovsky

otra espacialidad!!!!!!!!!!


lunes, 12 de septiembre de 2011

seminario FORMAS y LENGUAJES 3



sema
ARS Metropolitana 
invita seminario FORMAS y LENGUAJES 3

19septiembre2011  
19 horas     
lugar bar "Limbo" Armenia 1820 (al fondo)
entre Costa Rica y Nicaragua
frente a la plaza de Palermo Viejo

disertantes:
.................................................................................
1. Marcela Caballero
artista plástica* especialista en lógica y técnica de la forma*
http://biographa.blogspot.com/
.................................................................................
2. Alberto Méndez
artista plástico*
http://albertomendez.com/
.................................................................................
3. Marcela Paravano
licenciada en arte* artista plástica*
LA FORMA Y EL LENGUAJE EN EL ARTE
...............................................................................................

finalizaremos con brindis y sabrosos canapés a precio reducido

Chacho Pereyra
director
Alejandro Abaca
Secretario Académico
Homero Pellicer
Secretario Institucional

jueves, 8 de septiembre de 2011

Página/12

Universidad, autonomía y nación




 Por Diego Tatián *
Pensar la relación entre el conocimiento y la política remite a uno de los nudos centrales que aloja toda sociedad humana, y que adopta especial dramatismo en momentos en los que una colectividad se halla afectada por un proceso de transformaciones profundas. En el siglo XX, tanto el nazismo como el estalinismo pusieron en marcha experiencias de politización de la ciencia, subsunciones del Saber al Poder que dieron lugar a expresiones como “ciencia aria” o “ciencia proletaria”, para llevar adelante una batalla contra las formas “judía” o “burguesa” de concebir el mundo. Correlativamente, la universidad quedaba allí subordinada al Estado en tanto instrumento ideológico en la tarea de producir una nueva sociedad.
La tradición ilustrada, por su parte, acuñó la noción de “autonomía” y en base a ella una manera de entender la universidad que tiene su texto canónico en El conflicto de las facultades (1798), donde el viejo Kant postulaba la libertad irrestricta en la indagación filosófica, sustraída por su misma naturaleza a toda forma de censura ejercida desde el poder político, y concebía a la Facultad de Filosofía –en su tiempo abarcaba más o menos lo que hoy llamamos ciencias sociales–, en analogía con la Asamblea Nacional de 1789, como “el ala izquierda en el Parlamento de la ciencia”.
Referida a la libertad para pensar y producir conocimiento, la noción de autonomía tuvo una larga deriva histórica hasta llegar a la revuelta estudiantil de 1918 y convertirse en el corazón mismo de la universidad reformista argentina. ¿Qué estatuto reviste este concepto hoy? ¿Qué puede querer decir por otra parte que las universidades, según revelan sus siglas (a excepción de la UBA, que perdió la “n”), son “nacionales”? Esto último no puede sólo significar que los recursos que las sostienen provienen de las arcas públicas, ni el concepto de autonomía equivaler a una inmunización respecto de los dramas sociales en los que la universidad se halla necesariamente inscripta.
Por lo demás, la expresión “universidad nacional” encierra una fecunda contradicción entre los términos, pues significa tanto como decir universalidad nacional. Interesa mucho preservar esta tensión, donde uno de los conceptos potencia al otro. Interesa mucho, pues, no liquidar la complejidad atesorada en esa expresión (que podemos extenderla a “universalidad y proyecto nacional”) y estar dispuestos a un pensamiento que incluya todas las mediaciones que sean necesarias, así como a su composición en un internacionalismo afirmativo y alternativo a la actual lógica supranacional del capitalismo que procura inscribir a la educación en el circuito del consumo a distancia, como cualquier mercancía. Participación de la universidad nacional en una red global contrahegemónica –según sugiere Boaventura de Sousa Santos–, y por qué no en la constitución de una Internacional Universitaria de contrahegemonía activa.
Igualmente, el anhelo de una universidad popular, además de pública, incorpora al estallido de otros derechos civiles, sociales, económicos o sexuales que se verifica en la Argentina como nunca antes en su historia, lo que el rector de la UNGS, Eduardo Rinesi, llama el “derecho a la universidad”, para cuya implementación deberán crearse las condiciones materiales –y no sólo las garantías formales– que permitan el goce del conocimiento y la apropiación de las universidades por sectores populares hasta ahora excluidos. El tratamiento parlamentario y la puesta en marcha de una Asignación Universal Universitaria –viejo proyecto del ex presidente Kirchner que apuntaba en esa dirección– pondría a la Argentina en la vanguardia mundial de la equidad educativa y a la altura del más verdadero espíritu de la Reforma.
Si bien la democratización del ingreso y la permanencia resulta crucial para una universidad autoconcebida como bien público capaz de detectar y enfrentar formas elementales de discriminación hacia el interior, tanto como de desmontar por el pensamiento formas más sofisticadas que se amparan en la ideología del mérito –palabra que por lo general sólo traviste el ingreso económico–; y si bien la implementación de políticas de retención que minimicen las desigualdades revisten una gran importancia institucional, cualquier paso por las aulas de ciudadanos que por razones diversas no pueden permanecer en ellas hasta concluir sus estudios redunda en una mayor calidad de la sociedad civil, en cuanto los lenguajes y saberes allí obtenidos –por fragmentarios que pudieran ser– impactan de diverso modo en la opinión pública, en los circuitos laborales, en las innumerables decisiones políticas que son tomadas en el interior de un colectivo social. Y sobre todo vuelve más libres a las personas que, aunque fugazmente, pudieron acceder a los estudios universitarios.
Todo ello supondría a su vez una cultura de autoevaluación compleja, en ruptura con la requerida por el mercado trasnacional de los saberes que establece como criterio decisivo de supervivencia académica, tanto de docentes como de universidades, la cantidad de publicaciones en revistas consideradas de alto impacto. Requiere, en efecto, una libertad –más que un complejo de inferioridad– respecto de los indicadores en virtud de los cuales suele establecerse el ranking de universidades –en general, los mismos que las universidades periféricas han introyectado para evaluación de sus docentes–.
El desinterés por la democracia social implícito en el modelo de universidad que busca imponer el mercado educativo global –según el cual es el mercado mismo la única dimensión pública legítima que concierne a la universidad– se articula asimismo a un desmantelamiento de la universidad democráticamente organizada, en la que docencia, investigación y extensión no se hallan alienadas del propio gobierno y las decisiones acerca de la orientación que debe seguir todo lo que la universidad piensa y produce.
La imposición del paradigma neoliberal conlleva pues una escisión entre las actividades consideradas específicas al conocimiento y su transmisión por una parte, y su gestión institucional por la otra; una desresponsabilización política de la comunidad universitaria, que deberá de ahora en más encomendar su “administración” a gestores de recursos, humanos y financieros, conforme un modelo de organización empresarial donde las funciones se hallan profesionalizadas: “Estricta separación –dice Sousa Santos– entre administración, por un lado, y docencia e investigación, por otro”.
En ruptura con la captura del conocimiento por la mercancía y con las relaciones sociales que comporta, la universidad y el derecho a ella no abjuran de ninguno de los términos más arriba mencionados: universal, nacional, internacional, autónoma, popular..., más bien los conjuga sin caer en tentaciones sacrificiales. No entrega la idea de autonomía, la preserva y la reinventa como capacidad de afectar y ser afectado, como ejercicio colectivo de una libertad positiva, como república de razones y reino de la crítica, nunca como mero resguardo de interferencias sociales ni como asepsia que mantiene una nobleza académica a salvo de las borrascas de la historia. Autonomía no es tocar la lira mientras Roma arde, sin saber que Roma arde y sin saber –lo que es aún peor– que se toca la lira. Autonomía no equivale a soberanía ni convierte a la universidad pública en un imperio dentro de otro imperio.
Recuperar el concepto de autonomía y disputárselo al liberalismo (o “liberismo” más bien) académico –que lo malversó convirtiéndolo en una pura heteronomía del mercado y en un sistema autorreproductivo de privilegios– reasegura a la universidad de la Politisierung, a la vez que le permite asumir de manera lúcida y explícita el contenido político que encierra siempre la enunciación de nuevos significados, la producción de saberes y de intervenciones públicas.
La universidad como atención por la vida no universitaria y por experiencias que tienen lugar al margen de su ámbito dota a la autonomía de una “heterogeneidad” irreductible a heteronomías (profesionalistas, empresariales o estatales) que pudieran vulnerar su libertad de intervenir, de transformar y de pensar. El adjetivo heterogénea busca designar aquí una universidad sensible a una pluralidad intelectual, estética y social de la que toma sus objetos, y por la que se deja afectar.
Así comprendida, la heterogeneidad universitaria reconoce una responsabilidad que se ejerce como resistencia a la imposición de una lengua única, o mejor aún: acto de invención en la lengua y el saber (imaginación de saberes “improductivos” en sentido marxiano del término; producción científica inapropiable por el Capital...) que permite sustraer el estudio, el producto del estudio, la forma de vida dedicada al estudio, de la “ciencia politizada” que impulsan los grandes centros de financiamiento y los organismos internacionales de crédito como si se tratara de una pura neutralidad.
Pero además admite en su propia reflexión la tarea paradójica acerca de “cómo hablar no universitariamente de la universidad” –según la expresión del filósofo chileno William Thayer–, que acompaña necesariamente la interrogación acerca del modo y posibilidad de un pensamiento y un poder instituyentes orientados a una reinvención. Lo que no equivale en absoluto a constituir la universidad como objeto de una disciplina específica de estudios universitarios, según se desarrolla actualmente con particular intensidad. La investigación universitaria sobre la universidad (que se expresa hoy en un creciente número de coloquios y publicaciones) puede ser una cancelación de todo conflicto de las facultades en favor de una homologación disciplinaria puramente instrumental, que nada tiene que ver con un anhelo de universalidad y que prescinde de la interrogación por el saber y sus sentidos, por las condiciones de un saber del saber.
Conforme esta acepción que pone en obra una contigüidad del conocimiento y la vida, “autonomía heterogénea” equivale a decir que la universidad no es instrumento ni objeto de poderes que son exteriores a ella (entre los cuales los del mercado son los que más la amenazan con reducirla a estructura prestadora de servicios e insumos), sino sujeto cuya vitalidad crítica conjuga conocimiento e interrogación por la justicia, y cuya indagación del libro del mundo desde una encrucijada universal y nacional, sensible a la irrupción de derechos desconocidos, mantiene abierta la cuestión democrática –que no va de suyo por la sola vigencia de un Estado de Derecho y que requiere la autoinstitución ininterrumpida de una voluntad colectiva y una inteligencia común–.
* Profesor de Filosofía Política (UNC).

domingo, 4 de septiembre de 2011

3GATTI ARQUITECTURA



AUTOR / / Benedicto Flores
Zebar-by-3GATTI-Architecture-Studio-16
Este bar en Shanghai 3GATTI Estudio de Arquitectura se parece a una cueva creada por un corte ondulado aberturas en los paneles en toda su longitud.
Zebari llamó el local de música en vivo tiene un plan de zig-zag.
Cada uno de los paneles de cartón yeso utilizados para dar forma al Interior ha sido cortado a mano. El proyecto es de 2006 pero fue completado y abierto sólo en 2010.
Zebar-by-3GATTI-Architecture-Studio-20Zebar-by-3GATTI-Architecture-Studio-11Zebar-by-3GATTI-Architecture-Studio-13Zebar-by-3GATTI-Architecture-Studio-14Zebar-by-3GATTI-Architecture-Studio-15Zebar-by-3GATTI-Architecture-Studio-17Zebar-by-3GATTI-Architecture-Studio-18Zebar-by-3GATTI-Architecture-Studio-19Zebar-by-3GATTI-Architecture-Studio-21Zebar-by-3GATTI-Architecture-Studio-22Zebar-by-3GATTI-Architecture-Studio-2Zebar-by-3GATTI-Architecture-Studio-3
Las fotografías son de Daniele Mattioli

Lazos de Sangre. Niemeyer en Pampulha y Zaha Hadid en Glasgow


Se realizan perfiles y se extrudan de distintas maneras.


1-Oscar Niemeyer. Capilla de San Francisco de Asís. Pampulha, Belo Horizonte 1942
2- Zaha Hadid. Riverside Building, Glasgow Transport Museum. Glasgow, 2004-2011







martes, 30 de agosto de 2011

HISTORIA DE LA GEOMETRÍA



"Antes del pensamiento que aspira a una coherencia lógica hallamos fe en una u otra magia"


Geometría antes de los griegos
El origen de la Geometría coincide con el origen de la humanidad. El pensamiento precientífico apoyado sobre el monoteísmo naturalista deAmenhotep IV funda en el siglo XIV aC culto a la nueva imagen del dios Ra representado con un círculo dorado. La abstracción del pensamiento mágico representa el primer acercamiento -informal e intuitivo- a la Geometría. Anteriormente, en el siglo XXVII a.C., el emperador chino Hoang-Ti mandó construir un observatorio astronómico con el fin principal de corregir el calendario.
Las primeras civilizaciones mediterráneas adquieren poco a poco conocimientos geométricos de carácter muy práctico basados en fórmulas -mejor dicho, algoritmos expresados en forma de recetario-, para calcular áreas y longitudes. La finalidad era práctica al pretender con ello calcular la producción proporcional de las parcelas de tierra para determinar los impuestos, o reconstruir las parcelas de tierra después de las inundaciones. El conocimiento geométrico tanto de egipcios como de las culturas mesopotámicas pasa íntegramente a la cultura griega a través de Tales de Mileto, la secta de los pitagóricos, y esencialmente de Euclides.


La Geometría antes de Euclides
Tales visita Egipto una larga temporada y aprende de los sacerdotes y escribas egipcios lo referente a sus conocimientos en general. Impresiona ahora -tanto como a los egipcios- que fuera capaz de razonar y medir entonces la altura de la pirámide de Keops y de predecir un eclipse solar con asombrosa precisión.
La Geometría griega es la primera en ser formal. Parte de los conocimientos concretos y prácticos de las civilizaciones egipcia y mesopotámicas, y da un paso de abstracción al considerar los objetos como entes ideales -un cuadradocualquiera, en lugar de una pared cuadrada concreta, un círculo en lugar del ojo de un pozo...- que pueden ser manipulados mentalmente, con la sola ayuda de la regla y el compás. Aparece por primera vez la demostración como justificación de la veracidad de un conocimiento, aunque en un primer momento fueran más justificaciones intuitivas que verdaderas demostraciones formales.
La figura de Pitágoras y de la secta de seguidores pitagóricos tiene un papel central, pues eleva a la categoría de elemento primigenio el concepto denúmero, arrastrando a la Geometría al centro de su doctrina -en este momento inicial de la historia de la Matemática aún no existe distinción clara entre Geometría y Aritmética-, y asienta definitivamente el concepto de demostración formal como única vía de establecimiento de la verdad en Geometría.
Esta actitud permitió la medición de la tierra por Eratóstenes, así como la medición de la distancia a la luna, y la invención de la palanca por Arquímedes, varios siglos después.
En el seno de los pitagóricos surge la primera crisis de la Matemática: la aparición de los inconmensurables aunque esta crisis es de carácter más filosófico y aritmético que geométrico.
Surge entonces un problema a nivel lógico: una demostración parte de una o varias hipótesis para obtener una tesis. La veracidad de la tesis dependerá de la validez del razonamiento con el que se ha extraído (esto será estudiado por Aristóteles al crear la Lógica) y de la veracidad de las hipótesis. Pero entonces debemos partir de hipótesis ciertas para poder afirmar con rotundidad la tesis. Para poder determinar la veracidad de las hipótesis, habrá que considerar cada una como tesis de otro razonamiento, cuyas hipótesis deberemos también comprobar. Se entra aparentemente en un proceso sin fin en el que, indefinidamente, las hipótesis se convierten en tesis a probar.


Euclides y los Elementos
Vinculado al Museo de Alejandría y a su Biblioteca, Euclides zanja la cuestión al proponer un sistema de estudio en el que se da por sentado la veracidad de ciertas proposiciones por ser intuitivamente claras, y deducir de ellas todos los demás resultados. Su sistema se sintetiza en su obra cumbre losElementos, modelo de sistema axiomático-deductivo. Sobre tan sólo cinco postulados y las definiciones que precisa construye toda la Geometría y la Aritmética conocidas hasta el momento. Su obra, en XIII volúmenes, perdura como única verdad geométrica hasta el siglo XIX.
Entre los postulados en los que Euclides se apoya hay uno (el quinto postulado) que trae problemas desde el principio. Su veracidad está fuera de toda duda, pero tal y como aparece expresado en la obra, muchos consideran que seguramente puede deducirse del resto de postulados. Durante los siguientes siglos, uno de los principales problemas de la Geometría será determinar si el V postulado es o no independiente de los otros 4, es decir, si es necesario considerarlo como un postulado o es un teorema, es decir, puede deducirse de los otros, y por lo tanto colocarse entre el resto de resultados de la obra.


Después de Euclides
Euclides cierra la etapa de Geometría griega -a excepción de Pappus en el 350 aC-, y por extensión la etapa del mundo antiguo y medieval-, a excepción también de las figuras de Arquímedes y Apolonio.
Arquímedes estudió ampliamente las secciones cónicas, introduciendo en la Geometría las primeras curvas que no eran ni rectas ni circunferencias, aparte de su famoso cálculo del volumen de la esfera, basado en los del cilindro y el cono.
Apolonio trabajó en varias construcciones de tangencias entre círculos, así como en secciones cónicas y otras curvas.


Los tres problemas de la Antigüedad
La Geometría griega es incapaz de resolver tres famosos problemas que heredarán los matemáticos posteriores. Los tres problemas debían ser resueltos entonces utilizando regla y compás, únicos instrumentos aceptados en la Geometría de Euclides. Añadido a estos tres problemas, la demostración de si el V postulado es o no es un teorema deducible de los cuatro anteriores se considera además de otro problema clásico de la Geometría helenística el hilo conductor hasta las Geometrías No Euclidianas del siglo XIX. Los tres otros problemas son:
La duplicación el cubo
Pericles muere de la terrible peste que asola Atenas.Cuenta la leyenda que una terrible peste asolaba la ciudad de Atenas, hasta el punto de llevar a la muerte a Pericles. Una embajada de la ciudad fue al oráculo de Delos, consagrado a Apolo (en ciertas fuentes aparece el oráculo de Delfos, en lugar del de Delos, también consagrado a Apolo), para consultar qué se debía hacer para erradicar la mortal enfermedad. Tras consultar al Oráculo, la respuesta fue que se debía duplicar el altar consagrado a Apolo en la isla de Delos. El altar tenía una peculiaridad: su forma cúbica. Prontamente, los atenienses construyeron un altar cúbico cuyos lados eran el doble de las del altar de Delos, pero la peste no cesó, se volvió más mortífera. Consultado de nuevo, el oráculo advirtió a los atenienses que el altar no era el doble de grande, sino 8 veces mayor, puesto que el volumen del cubo es el cubo de su lado ((2l)3 = 23l3 = 8l3). Nadie supo cómo construir un cubo cuyo volumen fuese exactamente el doble del volumen de otro cubo dado, y el problema matemático persistió durante siglos (no así la enfermedad).
La trisección del ángulo
Este problema consiste en dividir un ángulo cualquiera en tres ángulos iguales, empleando únicamente la regla y el compás, de manera que la suma de las medidas de los nuevos tres ángulos sea exactamente la medida del primero. Dadas las condiciones nadie ha logrado hacerlo.
La cuadratura del círculo
La cuadratura del círculo consiste en tratar de obtener, dado un círculo, un cuadrado cuya área mide exactamente lo mismo que el área del círculo. Anaxágoras fue el primero en intentar resolverlo, dibujando en las paredes de su celda cuando fue hecho prisionero por explicar diversos fenómenos que los griegos atribuían a los dioses. Tampoco pudo ser resuelto por los geómetras de la antigüedad, y llegó a ser el paradigma de lo imposible. Como curiosidad, el filósofo inglés David Hume llegó a escribir un libro con supuestos métodos para resolver el problema. Hume no tenía conocimientos matemáticos serios, y nunca aceptó que todos sus métodos fallaban.
La Geometría en la Edad Media
Durante los siguientes siglos la Matemática comienza nuevos caminos - Álgebra y Trigonometría - de la mano de indios y árabes, y la Geometría apenas tiene nuevas aportaciones, excepto algunos teoremas de carácter más bien anecdótico. En Occidente, a pesar de que la Geometría es una de las siete Artes Liberales (encuadrada concretamente en el Quadrivium), las escuelas y universidades se limitan a enseñar los Elementos, y no hay aportaciones, excepto tal vez en la investigación sobre la disputa del V postulado. Si bien no se llegó a dilucidar en este periodo si era o no independiente de los otros cuatro, sí se llegaron a dar nuevas formulaciones equivalentes de este postulado.


La Geometría en la Edad Moderna
La Geometría Proyectiva
Es en el Renacimiento cuando las nuevas necesidades de representación del arte y de la técnica empujan a ciertos humanistas a estudiar propiedades geométricas para obtener nuevos instrumentos que les permitan representar la realidad. Aquí se enmarca la figura del matemático y arquitecto Luca Pacioli, de Leonardo da Vinci, de Alberto Durero, de Leone Battista Alberti, de Piero della Francesca, por citar sólo algunos. Todos ellos, al descubrir la perspectiva y la sección crean la necesidad de sentar las bases formales en la que se asiente las nuevas formas de Geometría que ésta implica: la Geometría proyectiva, cuyos principios fundamentales aparecen de la mano de Desargues en el siglo XVII. Esta nueva geometría de Desargues fue estudiada ampliamante ya por Pascal o por de la Hire, pero debido al interés suscitado por la Geometría Cartesiana y sus métodos, no alcanzó tanta difusión como merecía hasta la llegada a principios del siglo XIX de Gaspard Monge en primer lugar y sobre todo de Poncelet.
La Geometría Cartesiana 
La aparición de la Geometría Cartesiana marca la Geometría en la Edad Moderna. Descartes propone un nuevo método de resolver problemas geométricos, y por extensión, de investigar en Geometría.
El nuevo método se basa en la siguiente construcción: en un plano se trazan dos rectas perpendiculares (ejes) -que por convenio se trazan de manera que una de ellas sea horizontal y la otra vertical-, y cada punto del plano queda unívocamente determinado por las distancias de dicho punto a cada uno de los ejes, siempre y cuando se dé también un criterio para determinar sobre qué semiplano determinado por cada una de las rectas hay que tomar esa distancia, criterio que viene dado por un signo. Ese par de números, las coordenadas, quedará representado por un par ordenado (x,y), siendo x la distancia a uno de los ejes (por convenio será la distancia al eje vertical) e y la distancia al otro eje (al horizontal).
En la coordenada x, el signo positivo (que suele omitirse) significa que la distancia se toma hacia la derecha del eje vertical (eje de ordenadas), y el signo negativo (nunca se omite) indica que la distancia se toma hacia la izquierda. Para la coordenada y, el signo positivo (también se suele omitir) indica que la distancia se toma hacia arriba del eje horizontal (eje de abscisas), tomándose hacia abajo si el signo es negativo (tampoco se omite nunca en este caso). A la coordenada x se la suele denominar abscisa del punto, mientras que a la y se la denomina ordenada del punto.
Existe una cierta controversia aun hoy sobre la verdadera paternidad de este método. Lo único cierto es que se publica por primera vez como Geometría Analítica, apéndice al Discurso del Método, de Descartes, si bien se sabe que Pierre de Fermat conocía y utilizaba el método antes de su publicación por Descartes. Aunque Omar Khayyam ya en el siglo XI utilizara un método muy parecido para determinar ciertas intersecciones entre curvas, es imposible que alguno de los citados matemáticos franceses tuviera acceso a su obra.
Lo novedoso de la Geometría Analítica (como también se conoce a este método) es que permite representar figuras geométricas mediante fórmulas del tipo f(x,y) = 0, donde f representa una función. En particular, las rectas pueden expresarse como ecuaciones polinómicas de grado 1 (v.g.: 2x + 6y = 0) y las circunferencias y el resto de cónicas como ecuaciones polinómicas de grado 2 (v.g.: la circunferencia x2 + y2 = 4, la hipérbola xy = 1 ). Esto convertía toda la Geometría griega en el estudio de las relaciones que existen entre polinomios de grados 1 y 2. Desde un punto de vista formal (aunque ellos aun lo sabían), los geómetras de esta época han encontrado una relación fundamental entre la estructura lógica que usaban los geómetras griegos (el plano, la regla, el compás...) y la estructura algebraica del ideal formado por los polinomios de grados 0, 1 y 2 del Anillo de polinomios \mathbb{R}[x,y], resultando que ambas estructuras son equivalentes. Este hecho fundamental -no visto con nitidez hasta el desarrollo del Álgebra Moderna y de la Lógica Matemática entre finales del siglo XIX y principios del siglo XX-, resulta fundamental para entender por qué la Geometría de los griegos puede desprenderse de sus axiomas y estudiarse directamente usando la axiomática de Zermelo-Fraenkel, como el resto de la Matemática.
El método original de Descartes no es exactamente el que se acaba de explicar. Descartes utiliza solamente el eje de abscisas, calculando el valor de la segunda componente del punto (x,y) mediante la ecuación de la curva, dándole valores a la magnitud x. Por otro lado, Descartes sólo considera valores positivos de las cantidades x e y, dado que en la época aun resultaban "sospechosos" los números negativos. Como consecuencia, en sus estudios existen ciertas anomalías y aparecen curvas sesgadas. Con el tiempo se aceptaron las modificaciones que muestran el método tal y como lo conocemos hoy en día.


Los nuevos métodos
Agotamiento del método sintético
La aparición de la Geometría Analítica trae consigo una nueva forma de entender la Geometría. El nuevo método, algebraico, sustituye al antiguo, el sintético, consistente en establecer unos axiomas y unas definiciones y deducir de ellos los teoremas. El método sintético está a estas alturas casi agotado (aunque aun dará algunos resultados interesantes, como la característica de Euler, la naturaleza de estos resultados no es ya tanto geométrica como topológica, y los resultados realmente importantes que se hagan en adelante en el campo de la Geometría ya vendrán de la mano de métodos algebraicos o diferenciales), da paso al método algebraico: estudio de los objetos geométricos como representaciones en el espacio de ciertas ecuaciones polinómicas, o dicho de otro modo, del conjunto de raíces de polinomios. El método sintético sólo volverá a abordarse cuando aparezcan las geometrías no euclídeas, y definitivamente deja de ser un instrumento de investigación geométrica a principios del siglo XX, quedando relegado a un conjunto de instrumentos y herramientas para la resolución de problemas, pero ya como una disciplina cerrada.
Los límites del método algebraico
El método algebraico se ve posibilitado por un avance en Álgebra hecho durante el siglo XVI, la resolución de las ecuaciones de grado 3º y 4º. Esto permite generalizar la Geometría, al estudiar curvas que no son dadas por polinomios de segundo grado, y que no pueden construirse con regla y compás -además de las cónicas, excluyendo a la circunferencia, claro-. Pero este método, que terminará constituyendo una disciplina propia, la Geometría Algebraica, tardará aun mucho -siglo XX- en salir de unas pocas nociones iniciales, prácticamente inalteradas desde Descartes, Fermat y Newton. La razón será la imposibilidad de resolver por radicales la ecuación de quinto grado, hecho no descubierto hasta el siglo XIX, y el desarrollo de la Teoría de Anillos y del Álgebra Conmutativa.
El Cálculo Infinitesimal
El método algebraico tiene otra generalización natural, que es la de considerar una curva no solo como una ecuación polinómica, sino como una ecuación f(x,y) = 0 en la que el polinomio es ahora sustituido por una función cualquiera f. La generalización de todo esto desde el plano (2 coordenadas) al estereoespacio (3 coordenadas) se hace de forma natural añadiendo un tercer eje perpendicular (eje z) a los dos ya considerados, y las funciones tomarán la forma f(x,y,z).
Ya Isaac Barrow descubre gracias a la Geometría Analítica la relación entre la tangente a una curva y el área que encierra entre dos puntos y los ejes coordenados en su famosa Regla de Barrow, antes incluso de que Newton y Leibnitz dieran cada uno su exposición del Cálculo Infinitesimal. La relación entre el Análisis Matemático y la Geometría es así estrechísima desde incluso los orígenes de aquél. Las ideas geométricas no sólo fueron la base de los instrumentos iniciales del Cálculo Infinitesimal, sino que fueron en gran medida su inspiración. Por eso resulta natural que en un primer momento, Descartes, Newton o los Bernoulli no distinguieran entre los conceptos de curva y de función de una variable (o si se quiere, de curva y los ceros de una función de dos variables). Fue Euler el primero en empezar a intuir la diferencia, y el primero también en ampliar este tipo de estudios a las superficies (como función de dos variables o como el conjunto de los ceros de una función de tres variables). El trabajo de Monge continúa por esta línea.
En adelante, y hasta la aparición de Gauss, la Geometría queda supeditada a sus aplicaciones en Mecánica y otras ramas de la Física por medio de la resolución de Ecuaciones Diferenciales. Se estudia en especial la interpretación geométrica de las ecuaciones diferenciales (tanto de la solución en sí como problemas asociados a ellas, como puede ser el de las curvas ortogonales). En esta época aparece el que será el caballo de batalla de la Geometría Diferencial: el Teorema de la Función Implícita.
Fue Huygens el primero en estudiar la curvatura de una curva plana, aunque parece que fue Clairaut el que usa con maestría y fija el concepto.


La Geometría en la Edad Contemporánea
Gauss devuelve el carácter geométrico que impregna parte del Análisis Matemático, fundamentalmente con dos contribuciones: el nacimiento de la Variable Compleja y de la Geometría Diferencial.
Pero no son las únicas contribuciones de éste genio al campo de la Geometría. En su adolescencia se vio dividido entre dedicarse a la Filología o a la Matemática. A los 17 descubrió la manera de construir el polígono regular de 17 lados, y la condición necesaria y suficiente para que un polígono regular pueda construirse. Esto determinó su vocación.
En su primera demostración del Teorema Fundamental del Álgebra (de las cinco que realizó a lo largo de su carrera) sentó las bases del Análisis de Variable Compleja, usando la interpretación geométrica de los números complejos como vectores fijos del plano (no en este lenguaje, que será introducido mucho más tarde). Por cierto, se atribuye a Gauss la paternidad de esta idea. Primero Wessel y luego Argand se le anticiparon, pero nadie conocía los estudios de ambos. Aunque no es propiamente obra suya, pues la Variable Compleja está desarrollada fundamentalmente por Cauchy, sí es el primero en abordarla seriamente, y sobre todo le da una interpretación geométrica que marcará el desarrollo de esta rama.
Pero la principal contribución de Gauss a la Geometría es la creación de la Geometría Diferencial, retomando las ideas que sobre las relaciones entre el Análisis Matemático y la Geometría había hasta entonces y desarrollándolas ampliamente.
Partiendo de la base de que la Geometría estudia el espacio, las curvas y las superficies, establece la noción fundamental de curvatura de una superficie. Gracias a ella, y a la definición de geodésica, demuestra que si consideramos que una geodésica es una curva con menor distancia entre dos puntos sobre una superficie (es decir, si tenemos dos puntos sobre una superficie, el camino más corto entre esos dos puntos sin salirnos de la superficie es un segmento de geodésica), concepto totalmente análogo sobre la superficie al de recta en el plano, existen superficies en las que los triángulos formados por las geodésicas miden más de la medida de dos ángulos rectos, y otras en las que mide menos. Esto, esencialmente, es contradecir el V postulado de Euclides.
Estas consideraciones llevaron a Gauss a considerar la posibilidad de crear geometrías no euclídeas, pero aunque a esas alturas ya era el matemático más prestigioso de Europa, consideró que la mentalidad de la época no estaba preparada para un resultado de tal magnitud, y nunca publicó esos resultados. Sólo vieron la luz cuando Bolyai publicó su geometría no euclídea, y comprobó que la comunidad científica general aceptaba el resultado.
Así que, por un lado, Gauss fue el primero en crear una geometría no euclídea, y por otro fue el creador de la Geometría Diferencial y precursor de la Variable Compleja.
Además, Gauss es el primero en considerar una nueva propiedad en la Geometría: la orientación.
El final de los grandes problemas de la antigüedad
La controversia sobre el V postulado 
Como ya se ha adelantado, Gauss es el primero en construir una geometría (un modelo del espacio) en el que no se cumple el V postulado de Euclides, pero no publica su descubrimiento. Son Bolyai y Lobachevsky quienes, de manera independiente y simultáneamente publican cada uno una geometría distinta en la que no se verifica tampoco el V postulado.
¿Qué quiere decir esto? Tanto Bolyai como Lobachevsky parten de un objeto geométrico y establecen sobre él unos postulados que son idénticos a los de Euclides en los Elementos, excepto el quinto. Pretenden originalmente razonar por reducción al absurdo: si el V postulado depende de los otros cuatro, cuando lo sustituya por aquél que dice exactamente lo contrario, he de llegar a alguna contradicción lógica. Lo sorprendente es que no se llega a contradicción ninguna, lo cual quiere decir dos cosas:
1º El V postulado es independiente de los otros cuatro, es decir, no puede deducirse de los otros cuatro, no es un teorema, y Euclides hizo bien en considerarlo como un postulado.
2º Existen modelos del espacio en los que, en contra de toda intuición, por un punto que no esté en una cierta recta no pasa una única recta paralela a la dada. Esto es tremendamente antiintuitivo, pues no podemos concebir tal cosa, no podemos imaginar (ni mucho menos dibujar) una situación así, sin reinterpretar los conceptos de recta, plano, etc. Pero desde el punto de vista lógico es perfectamente válido.
Como es de imaginar, esto supuso una fuerte crisis en la Matemática del siglo XIX, que vino a sumarse a otras controversias.
Es importante señalar que las geometrías de Bolyai y de Lobachevsky, no depende de si se construyen usando métodos analíticos o sintéticos. Existen formas de construirlas tanto de manera sintética como analítica. El modelo es el mismo se llegue como se llegue, lo que abunda en su veracidad.
La trisección del ángulo y la duplicación del cubo
Un hecho aparentemente lejano en Álgebra dará como resultado la resolución de estos dos problemas. Galois muere a los 21 años de edad dejando un "testamento" lleno de ideas apresuradamente escritas. Entre ellas se encuentran las bases de la Teoría de Grupos y de la Teoría de Galois. Galois resolvió el problema de encontrar una fórmula para solucionar las ecuaciones de 5º grado, pero este resultado no llegó a ser publicado en su corta vida. Concluyó que una ecuación de grado 5 o mayor puede ser no resoluble por radicales (es decir, mediante una fórmula con un número finito de operaciones algebraicas). Su manera de abordar el problema abre una nueva vía dentro de la Matemática.
Pero la Teoría de Galois (una rama del Álgebra que trata sobre cuándo es posible resolver una ecuación polinómica estudiando el conjunto de números en los que se expresa esa ecuación) no da sólo esos frutos. También demuestra que todo lo construible con regla y compás tiene una traducción a polinomios muy concreta. Se demuestra que trisecar un ángulo o duplicar un cubo necesita de polinomios que no tienen esa forma, y por lo tanto, es imposible con la sola ayuda de la regla y el compás trisecar un ángulo cualquiera o duplicar un cubo.
La cuadratura del círculo
En 1862, Lindemann demuestra que el número Pi es trascendente, es decir, no puede ser raíz de ningún polinomio con coeficientes enteros. Esto implica que no es un número que pueda construirse con regla y compás, y demuestra que no es posible construir con sólo estos instrumentos un cuadrado de area igual a la de un círculo dado.
El 10 de junio de 1854, Bernhard Riemann da una conferencia en laUniversidad de Gotinga para completar su habilitación (grado que le permitiría optar a una plaza de profesor universitario). El tema de la conferencia fue la Geometría, a elección de Gauss, su protector y antiguo profesor durante la licenciatura y el doctorado. La conferencia, cuyo título fue Über die Hypothesen, Welche der Geometrie zu Grunde liegen (Sobre las hipótesis que están en los fundamentos de la geometría), pasa por ser una de las más celebradas de la historia de la Matemática, y uno de los mayores logros científicos de la humanidad. De entre los presentes se dice que sólo Gauss fue capaz de comprender su contenido, y hay que decir que le entusiasmó.


Variedades riemannianas y el tensor curvatura
En la primera parte de la conferencia, Riemann se pregunta qué problema hay en aumentar el número de dimensiones del espacio. Riemann, usando aun un lenguaje intuitivo y sin hacer demostraciones, introduce primero el concepto de variedad diferenciable, generalización del concepto de superficie a cualquier número (entero positivo) arbitrario de dimensiones. De hecho, el nombre variedad hace referencia a las varias coordenadas que variarían para ir obteniendo los puntos del objeto. Las superficies serían las variedades de dimensión 2, mientras que las curvas serían las variedades de dimensión 1, y aun los puntos las de dimensión 0. De todas formas, esta aproximación al concepto es demasiado imprecisa, pues el punto clave de la definición formal de una variedad diferenciable (definición no expuesta correctamente hasta 1913 por Hermann Weyl) es que esto es cierto localmente, es decir, cada punto de la variedad tiene algún entorno homeomorfo a un abierto del espacio euclídeo \mathbb{R}^n, de manera que cuando el inverso de uno de estos homeomorfismos se compone con otro de estos homeomorfismo se obtiene una función diferenciable de un abierto de \mathbb{R}^n en otro abierto de \mathbb{R}^n. Pero como decimos hicieron falta casi 60 años para que la definición terminara de cuajar.
No era la primera vez que se especulaba con la posibilidad de la existencia de espacios de dimensión superior a 3. De hecho este tema ha sido tratado en la Historia en varias ocasiones, pero siempre desde un punto de vista de la realidad sensible (para negar su existencia) o metafísico. Es Cayley quien en 1843 trata explícitamente el tema por primera vez, y volverá a él nuevamente en repetidas ocasiones. Le seguirán Sylvester, Clifford, Grassmann y Schläfli entre otros, aunque hay que decir que la visión de todos ellos es mucho más algebraica que geométrica.
Es probable que el estudio de las superficies de Riemann, objetos a cuyo estudio había dedicado su tesis doctoral, indujeran a Riemann a pensar en este concepto de variedad de dimensión arbitraria.
Si tomamos unos ejes coordenados y dibujamos todos los puntos (x,f(x)), donde x varía en un intervalo y f es una función real, derivable y definida sobre ese mismo intervalo, obtendremos la curva (dimensión 1) dada por la gráfica de una función.
Si en lugar de ser una función de una variable tenemos una función de dos variables f(x,y), al dibujar todos los puntos (x,y,f(x,y)), donde (x,y) son de una región del plano donde esté definida f, obtenemos una superficie (dimensión 2). Riemann estudia funciones complejas de variable compleja, es decir, funciones cuya gráfica tendría por puntos cosas de la forma (x,y,u(x,y),v(x,y)), siendo tanto u(x,y) como v(x,y) funciones reales (es decir, cada uno representa un número real). Las gráficas de este tipo de funciones tendrían dimensión 3 y estarían en un espacio de 4 dimensiones, y gozarían de propiedades muy parecidas a las de las superficies.
Una variedad riemanniana no es sólo un objeto geométrico n-dimensional. Es una variedad diferencial a la que además hay que dotar de una métrica. Una métrica es un campo de tensores diferenciable de grado 2. Veamos: en cada punto de una variedad diferencial se puede calcular el espacio tangente a la variedad en ese punto, al igual que en una superficie (suave), en cada punto podemos calcular el plano tangente en ese punto a la superficie, y en una curva (suave) podemos calcular en cada punto la recta tangente a la curva en dicho punto.
Ese espacio tangente tendrá la misma dimensión que la variedad (en el caso de curvas, el espacio tangente -la recta tangente- tiene dimensión 1, en el de superfícies tiene dimensión 2). Una métrica (o estructura riemanniana) sobre una variedad es una aplicación que a cada punto de la variedad le asigna un producto escalar en el espacio tangente a la variedad en ese punto, y esa aplicación es diferenciable. Un producto escalar es, para entendernos, una regla que nos permite calcular longitudes de segmentos y ángulos entre rectas. A través de una métrica, se pueden definir sobre una variedad conceptos como longitud de una curva o el ángulo entre dos curvas, generalizar a variedades el concepto de geodésica, ya utilizado por Gauss para superficies, que viene a ser (ojo, esto es una explicación de cómo es una geodésica, no es una definición) una curva dibujada sobre una superficie (o en nuestro caso sobre una variedad) de tal forma que entre dos de sus puntos minimice la distancia medida sobre la superficie (variedad). Por ejemplo, si tenemos un globo y marcamos dos puntos sobre él, la distancia más corta se calculará, como sabemos, por la medida del segmento de recta que atraviesa el globo por ambos puntos. Sin embargo, si lo que pretendemos es buscar el camino más corto para llegar de un punto a otro sin salirnos de la superficie del globo, tendremos que dibujar sobre él una curva que una los puntos y se combe por la propia "curvatura" del globo. Esa curva sería un segmento de geodésica en la superficie del globo.
El punto culminante de la primera parte de la conferencia llegó cuando Riemann, utilizando las geodésicas, define el tensor curvatura seccional, que es la generalización a variedades del concepto de curvatura estudiado por Gauss. Este instrumento permite "medir la curvatura" de una variedad.


El modelo del Universo
En la segunda parte de la conferencia, Riemann se pregunta por el modelo que debe de seguir el espacio físico, el espacio en el que nos movemos, cuál es su dimensión, cuál es su geometría.
Las ideas de Riemann, decididamente muy avanzadas para su época, cuajaron definitivamente cuando Einstein y Poincaré, al mismo tiempo pero de manera independiente, las aplicaron al espacio físico para crear la Teoría de la Relatividad.
El nuevo modo de Riemann de estudiar la Geometría considera que cualquier modelo de espacio (ya sea el plano, el espacio tridimensional, o cualquiera otro) puede ser estudiado como una variedad diferenciable, y que al introducir en ella una métrica se está determinando la geometría que gobierna ese objeto. Por ejemplo, el plano no es, por sí solo, euclidiano ni no euclidiano, sino que introduciendo la métrica euclídea es cuando en el plano verifica el V postulado de Euclides. Si en lugar de considerar esa métrica se introduce en el plano otra métrica, como la de Lobatchevsky, deja de verificarse el mismo postulado. La propiedad de las geodésicas de minimizar la longitud entre dos de sus puntos sin salirse de la variedad recuerda mucho a la definición de las rectas como aquellas líneas que determinan la menor distancia entre dos puntos. Se considera que las geodésicas son a las variedades riemannianas lo que las rectas al espacio euclidiano, es decir, las geodésicas son como las rectas de las variedades.
Esta nueva visión permite estudiar todas las nuevas geometrías no euclídeas, así como la geometría euclidiana bajo la misma óptica de la nueva Geometría Riemanniana.
Cuando las ideas de Riemann consiguen extenderse, la Geometría pasa ya definitivamente a ser el estudio de las variedades, dejando de ser definitivamente el estudio de triángulos, circunferencias, polígonos, etc.
Los puntos básicos de la conferencia de Riemann son, por un lado, la posibilidad de aumentar indefinidamente el número de dimensiones del espacio (el Álgebra y el Análisis están ya creando la maquinaria necesaria para poder operar en dimensión finita arbitraria, con lo que definitivamente se podrá estudiar Geometría más allá de su visualización gráfica), es decir, de estudiar espacios de 3, 4, 5...dimensiones, y por otro lado dotar a los geómetras de un instrumento, el tensor curvatura, que les permite estudiar las propiedades intrínsecas de esos nuevos objetos, esos nuevos espacios, las variedades.
Felix Klein es la otra gran pieza clave de la Geometría en el siglo XIX. En 1871 descubrió que la geometría euclidiana y las no euclidianas pueden considerarse como casos particulares de la geometría de una superficie proyectiva con una sección cónica adjunta. Esto implicaba dos cosas: la primera es que la geometría euclidiana y las no euclidianas podían considerarse como casos particulares de la geometría proyectiva (o mejor dicho, de la geometría de una superficie en un espacio proyectivo). La segunda, que la geometría euclidiana es consistente (es decir, no puede llevar a contradicciones) si y sólo si lo son las geometrías no euclidianas.
Con esto se da fin a la controversia de si las geometrías no euclidianas tienen sentido o no, aunque el asunto coleará aun unos años ante el escepticismo de ciertos elementos que considerarán erróneo el argumento de Klein.


El Programa de Erlangen
Con motivo de su ingreso como profesor en la Facultad de Filosofía y al Senado de la Universidad de Erlangen, Klein escribió una memoria en 1872 que no llegó a leer en público y que puede considerarse, junto a la Conferencia de Riemann y a los Elementos de Euclides, como los puntos esenciales del estudio de la Geometría.
La idea de la memoria, conocida como el Programa de Erlangen, es bastante sencilla. Se trata de dar una definición formal de lo que es una geometría, más allá de la idea más o menos intuitiva que tenemos de ella.
Ante la aparición de las nuevas geometrías no euclidianas, parece lógico preguntarse qué es la Geometría, máxime cuando la propia idea de la geometría euclidiana se había visto modificada desde la irrupción de los métodos algebraicos y analíticos. Empieza a no estar tan claro que la Geometría sea el estudio de puntos, líneas (rectas o curvas) y superficies, puesto que el propio Análisis Matemático (sobre todo en el estudio de Ecuaciones Diferenciales) parece que también estudia tales objetos. Por otra parte, los métodos analíticos y algebraicos también son aplicables a las geometrías no euclidianas. Hay, digamos, dos niveles de distinciones: por un lado, la de las geometrías no euclidianas y la geometría euclidiana, por otro lado, la distinción entre el método sintético, el algebraico y el analítico.


¿Qué es la Geometría?
Klein responde a la pregunta introduciendo en la Geometría un nuevo concepto de carácter algebraico: el concepto de grupo. Un grupo es un conjunto G en el que hay definida una operación, es decir, una aplicación G \times G \longrightarrow G que a cada par de elementos del conjunto se le asigna otro elemento del conjunto (que será el resultado de operar dichos dos elementos). Mientras que la mayoría de la gente está familiarizada con las operaciones numéricas, les resulta difícil imaginar que puedan operarse puntos, rectas, etc. Puede hacerse, y no hay más que pensar en, por ejemplo, la operación "tomar el punto medio", que a cada par de puntos se le asigna el punto medio del segmento que une los dos primeros puntos.
Para que un conjunto en el que haya una operación sea un grupo deben de cumplirse ciertas condiciones:
* La operación debe ser asociativa: esto quiere decir que si tomamos cualesquiera tres elementos a,b,c del conjunto, el resultado de operar los dos primeros (a y b) y operar el resultado de ello con el tercero (c) debe de ser lo mismo que si primero operamos el segundo y el tercero (b y c) y el resultado lo operamos con el primero (a). Es decir, si la operación la denotamos por \star ha de ocurrir que a \star (b \star c) debe de ser lo mismo que (a \star b) \star c.
* Debe existir un elemento neutro: esto quiere decir que ha de haber un elemento e del conjunto de manera que si tomo cualquier otro elemento a del conjunto y lo opero con él, entonces el resultado vuelve a ser el elemento a, es decir, es como si al elemento a no lo hubiera operado. Así, con nuestra notación, e \star a = a y a \star e = a.
* Por último, cada elemento debe tener un elemento simétrico: esto quiere decir que si yo tomo un elemento cualquiera a del conjunto, entonces puedo encontrar otro elemento \hat{a} del conjunto de tal manera que al operar ambos, el resultado que obtengo es el elemento neutro: a \star \hat{a} = \hat{a} \star a = e.
El concepto de grupo no es invención de Klein, pero es él quien descubre un hecho fundamental que lo relaciona con las distintas geometrías: cada geometría es el estudio de ciertas propiedades que no cambian cuando se le aplican cierto tipo de transformaciones. Esas propiedades -por no cambiar-, las denomina invariantes, y las transformaciones que a un invariante no le hacen cambiar han de tener estructura de grupo bajo la operación de composición (componer dos transformaciones es hacer una de ellas y aplicarle la otra transformación al resultado de la primera). Resumiendo, Klein define soterradamente una geometría como dar el subgrupo de las biyecciones de un conjunto en sí mismo que uno admitirá como grupo principal. Los conceptos o definiciones serán los invariantes por ese grupo principal, y los teoremas serán las relaciones entre los conceptos.
Así Klein descubre que, por ejemplo, la geometría euclidiana es el estudio de los invariantes mediante el grupo de los movimientos rígidos (como las simetrías, giros y traslaciones), que la geometría afín es el estudio de los invariantes mediante el grupo de las translaciones, que la geometría proyectiva es el estudio de los invariantes mediante el grupo de las proyectividades, e incluso que la Topología es el estudio de los invariantes mediante el grupo de las funciones continuas y de inversa continua, entre otras.
De hecho, Klein afirma que la comprensión de "tener una geometría, entonces hay un grupo principal" es más bien al revés. Uno a priori dice qué tipo de transformaciones admitirá (es decir, da el grupo) y todo lo demás se puede reconstruir a partir de él. Se demuestra incluso, que si uno da un subgrupo de las biyecciones de un conjunto en sí mismo isomorfo a algún grupo clásico (simetrías, translaciones, proyectividades) entonces todos los teoremas de esa geometría son válidos en este.
El descubrimiento de Klein es fundamental, ya que por un lado nos permite clasificar las geometrías, comprendiendo cuál es una "subgeometría" de cual, por otro lado nos permite comprender qué es el estudio general de la Geometría (como disciplina matemática) y por último, pero no menos importante, es la confirmación de que los métodos sintético y algebraico no dan geometrías distintas, sino que realmente estudian la misma geometría en cada caso. Se pone fin así a la distinción entre el método sintético y el algebraico-analítico. En su época supuso la consagración de la Geometría Proyectiva como la Reina de las Geometrías.
In fieri.